with simplicity
and accuracy
Set objHTTP = CreateObject("WinHttp.WinHttpRequest.5.1")
url = "https://predict7.p.rapidapi.com/"
With objHTTP
.Open "POST", url, False
.SetRequestHeader "Content-type", "application/json"
.SetRequestHeader "X-RapidAPI-Host", "predict7.p.rapidapi.com"
.SetRequestHeader "X-RapidAPI-Key", "your_api_key"
.Send "{" _
& """data"": [518.4, 559.9, 553.1, 524.5, 567.6, 531.7, 576.4, 514.4]," _
& """horizon"":5," _
& """cls"":[0.2, 0.5, 0.8]" _
& "}"
End With
Debug.Print objHTTP.ResponseText
curl \
--request POST \
--url https://predict7.p.rapidapi.com/ \
--header 'content-type: application/json' \
--header 'X-RapidAPI-Host: predict7.p.rapidapi.com' \
--header 'X-RapidAPI-Key: your_api_key' \
--data '{
"data": [518.4, 559.9, 553.1, 524.5, 567.6, 531.7, 576.4, 514.4],
"horizon": 5,
"cls": [0.2, 0.5, 0.8]
}'
import requests
url = "https://predict7.p.rapidapi.com/"
headers = {
"content-type": "application/json",
"X-RapidAPI-Host": "predict7.p.rapidapi.com",
"X-RapidAPI-Key": "your_api_key"
}
payload = {
"data": [518.4, 559.9, 553.1, 524.5, 567.6, 531.7, 576.4, 514.4],
"horizon": 5,
"cls": [0.2, 0.5, 0.8]
}
response = requests.post(url, json=payload, headers=headers)
print(response.json())
from predictapi import Predictor # use of the predictapi module pypi.org/project/predictapi/
p = Predictor(api_key="your_api_key")
data = [518.4, 559.9, 553.1, 524.5, 567.6, 531.7, 576.4, 514.4],
horizon = 5,
cls = [0.2, 0.5, 0.8]
quantiles = p.predict(data = data, horizon = horizon, cls = cls)
print(quantiles)
const options = {
method: 'POST',
url: 'https://predict7.p.rapidapi.com/',
headers: {
'content-type': 'application/json',
'X-RapidAPI-Host': 'predict7.p.rapidapi.com',
'X-RapidAPI-Key': 'your_api_key'
},
data: {
data: [518.4, 559.9, 553.1, 524.5, 567.6, 531.7, 576.4, 514.4],
horizon: 5,
cls: [0.2, 0.5, 0.8]
}
};
const response = await axios.request(options);
console.log(response.data);
library(httr)
url <- "https://predict7.p.rapidapi.com/"
headers <- add_headers(
'Content-Type' = 'application/json',
'X-RapidAPI-Host' = 'predict7.p.rapidapi.com',
'X-RapidAPI-Key' = 'your_api_key'
)
payload <- list(
data=c(518.4, 559.9, 553.1, 524.5, 567.6, 531.7, 576.4, 514.4),
horizon=5,
cls=c(0.2, 0.5, 0.8)
)
response <- POST(url, body=payload, config=headers, encode="json")
print(content(response, "text"))
Our revolutionary method works on any type of time-series data (financial, cryptocurrency, sensor...)
Our projection method uses the latest advancements in stochastic modeling and machine learning.
Our projection method requires significant computational resources. Let's leave that to our servers.